Asymptotic spectral flow for Dirac operators
نویسندگان
چکیده
منابع مشابه
Discrete spectral triples converging to dirac operators
We exhibit a series of discrete spectral triples converging to the canonical spectral triple of a finite dimensional manifold. Thus we bypass the non-go theorem of Gökeler and Schücker. Sort of counterexample. In [2] Connes gave the most general example of non commutative manifolds defined from finite spectral triples, and such discrete manifolds were classified independently by Krajewsky [5, 6...
متن کاملThe h-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary
Several proofs have been published of the modZ gluing formula for the h-invariant of a Dirac operator. However, so far the integer contribution to the gluing formula for the h-invariant is left obscure in the literature. In this article we present a gluing formula for the h-invariant which expresses the integer contribution as a triple index involving the boundary conditions and the Calderón pr...
متن کاملThe η–invariant, Maslov index, and spectral flow for Dirac–type operators on manifolds with boundary
Several proofs have been published of the modZ gluing formula for the η–invariant of a Dirac operator. However, so far the integer contribution to the gluing formula for the η–invariant is left obscure in the literature. In this article we present a gluing formula for the η–invariant which expresses the integer contribution as a triple index involving the boundary conditions and the Calderón pr...
متن کاملSpectral Bounds for Dirac Operators on Open Manifolds
We extend several classical eigenvalue estimates for Dirac operators on compact manifolds to noncompact, even incomplete manifolds. This includes Friedrich’s estimate for manifolds with positive scalar curvature as well as the author’s estimate on surfaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Analysis and Geometry
سال: 2007
ISSN: 1019-8385,1944-9992
DOI: 10.4310/cag.2007.v15.n3.a5